Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,4-Dioxa- λ^{6}-thiatetracyclo[5.3.1.1 ${ }^{5,9} .0^{1,5}$]dodecane-3,3-dione

Savvas Ioannou* and Eleni Moushi

Chemistry Department, University of Cyprus, Nicosia 1678, Cyprus
Correspondence e-mail: ioannou.savvas@ucy.ac.cy
Received 5 April 2012; accepted 8 May 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.036 ; w R$ factor $=0.097$; data-to-parameter ratio $=12.6$.

The crystal structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$, was determined in order to investigate the effect of the eclipsed O atoms on the bond length of the vicinal quaternary C atoms. The two quaternary C atoms of the noradamantane skeleton and the two O atoms to which they are connected all located essentially in the same plane (maximum deviation $=0.01 \AA$), resulting in an eclipsed conformation of the $\mathrm{C}-\mathrm{O}$ bonds. The $\mathrm{C}-\mathrm{C}$ bond of the quaternary C atoms is 1.581 (3) \AA, considerably longer than the other $\mathrm{C}-\mathrm{C}$ bonds of the molecule due to the stretch of the cage structure.

Related literature

For reviews on noradamantene and analogous pyramidalized alkenes, see: Borden (1989, 1996); Vázquez \& Camps (2005). For the syntheses of cyclic sulfates of acyclic alcohols, see: Byun et al. (2000); Kaiser (1970); Boer et al. (1968). For the synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7diol), an important intermediate in the synthetic route towards the generation of noradamantene, see: Zalikowski et al. (1980); Bertz (1985). For the synthesis of the title compound, see: Ioannou \& Nicolaides (2009).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$

$M_{r}=216.25$
Monoclinic, $P 2_{b} / n$
$a=7.6571$ (3) A
$b=13.0442$ (6) \AA
$c=9.1755$ (4) \AA
$\beta=95.410(4)^{\circ}$
$V=912.37(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.05 \times 0.03 \times 0.02 \mathrm{~mm}$

Data collection

Oxford Diffraction SuperNova Dual Cu at zero Atlas diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.097$
$S=1.02$
1596 reflections

Diffraction, 2008)
$T_{\text {min }}=0.803, T_{\text {max }}=1.000$
5195 measured reflections
1596 independent reflections 1389 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

127 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.30 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.36 \mathrm{e}^{-3}$

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2010).

We are grateful to the Research Promotion Foundation (IПE) of Cyprus and the European Structural Funds for grant АNАВА $\Theta / П А Г І О / 0308 / 12$ which allowed the purchase of the XRD instrument, NEK $/ 0308 / 03$ enabling the purchase of a 500 MHz NMR spectrometer, of the RSC journal archive and for access to Reaxys and financial support to SI (ПENEK/ ENI $\Sigma X / 0308 / 01$). Partial financial support (SI) was also provided by the SRP "Interesting Divalent Carbon Compounds" granted by UCY. The A. G. Leventis Foundation is gratefully acknowledged for a generous donation to the University of Cyprus enabling the purchase of the 300 MHz NMR spectrometer. Dr Athanassios Nicolaides and Dr Anastasios Tasiopoulos are thanked for illuminating comment.

[^0]
References

Bertz, S. H. (1985). J. Org. Chem. 50, 3585-3592.
Boer, F. P., Flynn, J. J., Kaiser, E. T., Zaborsky, O. R., Tomalia, D. A., Young, A. E. \& Tong, Y. C. (1968). J. Am. Chem. Soc. 90, 2970-2971.

Borden, W. T. (1989). Chem. Rev. 89, 1095-1109.
Borden, W. T. (1996). Synlett, pp. 711-719.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Byun, H. S., He, L. \& Bittman, R. (2000). Tetrahedron, 56, 7051-7091.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Ioannou, S. \& Nicolaides, A. V. (2009). Tetrahedron Lett. 50, 6938-6940.
Kaiser, E. T. (1970). Acc. Chem. Res. 3, 145-151.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vázquez, S. \& Camps, P. (2005). Tetrahedron, 61, 5147-5208.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zalikowski, J. A., Gilbert, K. E. \& Borden, W. T. (1980). J. Org. Chem. 45, 346347

supplementary materials

Acta Cryst. (2012). E68, o1719 [doi:10.1107/S160053681202079X]

2,4-Dioxa- λ^{6}-thiatetracyclo[5.3.1.1 $\left.{ }^{5,9} .0^{1,5}\right]$ dodecane-3,3-dione

Savvas Ioannou and Eleni Moushi

Comment

Five member cyclic sulfates are known for their exceptional reactivity to solvolysis in comparison to the six member rings or their acyclic analogs (Kaiser 1970, Boer et al. 1968). Their significant role in organic synthesis originates from their high reactivity towards various nucleophiles (Byun et al. 2000).
Pyramidalized alkenes is a special category of olefins which have their four substituents of the double bond not lying on the same plane (Borden 1989, 1996, Vázquez \& Camps et al. 2005). This fact makes the higher pyramidalized alkenes (like noradamantene) very reactive and impossible to isolate at ambient conditions. Due to their high reactivity, once they form, they react instantly with any nucleophile. In the absence of any reactive compound during their formation, the most common product is their [2 2] dimer. Noradamantene is a member of a homologous series of this category and its preparation is quite important on studying the properties of these highly reactive compounds, as well as using it for the preparation of larger polycyclic hydrocarbons. The only convenient way of producing noradamantene quantitative is by reduction of the corresponding diiodide (scheme 3). Unfortunately, the precursor diol gives a very poor yield of diiodide ($\sim 20 \%$) upon iodination (Ioannou et al. 2009). The title compound was synthesized in an attempt to build new good precursors for noradamantene, or even for the corresponding diiodide in order to improve the reaction yields.

Experimental

Synthesis of tricyclo[3.3.1.0 ${ }^{3,7}$]nonane-3,7-diol cyclic sulfate. Tricyclo[3.3.1.0 $0^{3,7}$]nonane-3,7-diol ($500 \mathrm{mg}, 3.25 \mathrm{mmol}$) was added to concd $\mathrm{H}_{2} \mathrm{SO}_{4}(95-97 \%, 5 \mathrm{ml})$ and the resulting mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 1 h . After cooling, $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{ml})$ was added very slowly. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{ml})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under vacuum to give crude product ($629 \mathrm{mg}, 90 \%$). Crystallization by slow evaporation of the solvent (hexane/dichloromethane 4:1), afforded colorless needle-like crystals. Mp $117-118{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 2955,2922,2853,1460,1382,1337,1306,1242,1202,1090,960,837,812,777 ; \delta_{H}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.65$ $(2 H, \mathrm{~s},-\mathrm{CH}), 2.32(4 \mathrm{Heq}, \mathrm{d}, \mathrm{J}=11.1 \mathrm{~Hz}), 2.19(4 \mathrm{Hax}, \mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}), 1.55\left(2 \mathrm{H}, \mathrm{s},-\mathrm{CH}_{2}\right.$ bridge); $\delta_{C}\left(75.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $94.47(\mathrm{C}-\mathrm{O}), 46.44\left(\mathrm{CH}_{2}\right), 37.04(\mathrm{CH}), 33.00\left(\mathrm{CH}_{2}\right.$ bridge). Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 50.0 ; \mathrm{H}, 5.6 ; \mathrm{S}, 14.8$. Found: C, 50.4; H, 5.6; S, 14.4.

Refinement

The H atoms are positioned with idealized geometry and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2$ of $U_{\text {eq }}(\mathrm{C})$.

Computing details

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and

supplementary materials

publCIF (Westrip, 2010).

Figure 1
Structure of the title compound tricyclo-[3.3.1.0 $0^{3,7}$]nonane-3,7-diol cyclic sulfate with the atom-labelling. Displacement elipsoids are drawn at the 50% probability level.

Figure 2
Molecular packing of the title compound, viewed along [1000.

Figure 3

Preparation of the title compound and the experimental path of noradamantene formation.

2,4-Dioxa- λ^{6}-thiatetracyclo[5.3.1.1 ${ }^{5,9} .0^{1,5}$]dodecane-3,3-dione

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S} \\
& M_{r}=216.25 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=7.6571(3) \AA \\
& b=13.0442(6) \AA \\
& c=9.1755(4) \AA \\
& \beta=95.410(4)^{\circ} \\
& V=992.37(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& F(000)=456 \\
& D_{\mathrm{x}}=1.574 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3034 \text { reflections } \\
& \theta=3.1-28.8^{\circ} \\
& \mu=0.34 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Needle, colorless } \\
& 0.05 \times 0.03 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
Radiation source: SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 10.4223 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.097$
$S=1.02$
1596 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0463 P)^{2}+0.8407 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.36$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
S1	$-0.10031(6)$	$0.20071(4)$	$0.77561(6)$	$0.01630(19)$
O1	$-0.05353(18)$	$0.13375(11)$	$0.64114(16)$	$0.0169(4)$
O2	$0.09088(18)$	$0.23740(11)$	$0.83001(17)$	$0.0175(4)$
O3	$-0.20095(19)$	$0.28604(12)$	$0.72290(18)$	$0.0224(4)$
O4	$-0.16597(19)$	$0.13680(12)$	$0.88353(17)$	$0.0226(4)$
C1	$0.4547(3)$	$0.01132(17)$	$0.7302(2)$	$0.0185(5)$
H1A	0.5641	0.0202	0.7913	0.022^{*}
H1B	0.4684	-0.0465	0.6658	0.022^{*}
C2	$0.3060(3)$	$-0.01186(16)$	$0.8282(2)$	$0.0177(5)$
H2	0.3305	-0.0733	0.8881	0.021^{*}
C3	$0.1296(3)$	$-0.01977(16)$	$0.7334(2)$	$0.0170(5)$
H3A	0.1327	-0.0705	0.6564	0.020^{*}
H3B	0.0330	-0.0344	0.7914	0.020^{*}
C4	$0.1219(3)$	$0.08940(16)$	$0.6732(2)$	$0.0147(5)$
C5	$0.2365(3)$	$0.09867(17)$	$0.5474(2)$	$0.0178(5)$
H5A	0.2076	0.1589	0.4879	0.021^{*}
H5B	0.2300	0.0380	0.4860	0.021^{*}
C6	$0.4163(3)$	$0.10886(17)$	$0.6370(2)$	$0.0180(5)$
H6	0.5104	0.1242	0.5750	0.022^{*}
C7	$0.3780(3)$	$0.19974(17)$	$0.7360(3)$	$0.0181(5)$
H7A	0.4735	0.2121	0.8111	0.022^{*}
H7B	0.3524	0.2620	0.6803	0.022^{*}
C8	$0.2171(3)$	$0.15760(16)$	$0.7992(2)$	$0.0153(5)$
C9	$0.2700(3)$	$0.08211(17)$	$0.9218(2)$	$0.0189(5)$
H9A	0.1757	0.0698	0.9831	0.023^{*}
H9B	0.3742	0.1043	0.9819	

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0148(3)$	$0.0156(3)$	$0.0191(3)$	$0.0000(2)$	$0.0042(2)$	$-0.0004(2)$
O1	$0.0144(7)$	$0.0174(8)$	$0.0187(8)$	$0.0018(6)$	$0.0006(6)$	$-0.0029(6)$
O2	$0.0150(7)$	$0.0138(8)$	$0.0239(9)$	$0.0009(6)$	$0.0027(6)$	$-0.0052(7)$
O3	$0.0209(8)$	$0.0200(9)$	$0.0269(10)$	$0.0054(7)$	$0.0048(7)$	$0.0023(7)$
O4	$0.0223(8)$	$0.0237(9)$	$0.0229(9)$	$-0.0025(7)$	$0.0076(6)$	$0.0031(7)$
C1	$0.0188(11)$	$0.0159(11)$	$0.0210(12)$	$0.0020(9)$	$0.0026(9)$	$-0.0014(9)$
C2	$0.0210(11)$	$0.0120(11)$	$0.0196(12)$	$0.0014(9)$	$0.0005(9)$	$0.0040(9)$
C3	$0.0184(11)$	$0.0132(11)$	$0.0196(12)$	$-0.0017(9)$	$0.0037(8)$	$-0.0004(9)$
C4	$0.0116(10)$	$0.0132(11)$	$0.0191(12)$	$-0.0001(9)$	$-0.0001(8)$	$-0.0010(9)$
C5	$0.0209(11)$	$0.0169(11)$	$0.0159(12)$	$0.0022(9)$	$0.0036(9)$	$0.0005(9)$
C6	$0.0165(10)$	$0.0161(11)$	$0.0225(12)$	$-0.0006(9)$	$0.0075(9)$	$0.0004(9)$
C7	$0.0156(11)$	$0.0155(12)$	$0.0236(13)$	$-0.0016(9)$	$0.0037(9)$	$-0.0011(9)$
C8	$0.0148(10)$	$0.0124(11)$	$0.0189(12)$	$0.0007(9)$	$0.0037(8)$	$-0.0035(9)$
C9	$0.0185(10)$	$0.0222(12)$	$0.0158(12)$	$0.0001(10)$	$0.0007(8)$	$0.0006(10)$

Geometric parameters $\left(\stackrel{A}{ },{ }^{\circ}\right)$

S1-O3	1.4129 (16)	C3-H3B	0.9700
S1-O4	1.4221 (16)	C4-C5	1.520 (3)
S1-O2	1.5759 (15)	C4-C8	1.581 (3)
S1-O1	1.5801 (15)	C5-C6	1.541 (3)
$\mathrm{O} 1-\mathrm{C} 4$	1.466 (2)	C5-H5A	0.9700
O2-C8	1.466 (2)	C5-H5B	0.9700
C1-C6	1.546 (3)	C6-C7	1.538 (3)
C1-C2	1.546 (3)	C6-H6	0.9800
C1-H1A	0.9700	C7-C8	1.514 (3)
C1-H1B	0.9700	C7-H7A	0.9700
C2-C9	1.536 (3)	C7-H7B	0.9700
C2-C3	1.540 (3)	C8-C9	1.521 (3)
C2-H2	0.9800	C9-H9A	0.9700
C3-C4	1.526 (3)	C9-H9B	0.9700
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700		
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 4$	118.88 (9)	C3-C4-C8	105.15 (17)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	109.24 (9)	C4-C5-C6	98.78 (17)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 2$	109.66 (9)	C4-C5-H5A	112.0
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	108.94 (9)	C6-C5-H5A	112.0
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 1$	109.92 (9)	C4-C5-H5B	112.0
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	98.22 (8)	C6-C5-H5B	112.0
$\mathrm{C} 4-\mathrm{O} 1-\mathrm{S} 1$	109.39 (12)	H5A-C5-H5B	109.7
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{S} 1$	109.44 (12)	C7-C6-C5	99.84 (16)
C6- $\mathrm{C} 1-\mathrm{C} 2$	111.76 (17)	C7-C6-C1	110.17 (18)
C6-C1-H1A	109.3	C5-C6-C1	109.73 (18)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3	C7-C6-H6	112.2
C6-C1-H1B	109.3	C5-C6-H6	112.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.3	C1-C6-H6	112.2
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.9	C8-C7-C6	98.85 (17)

supplementary materials

$\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 3$	$100.12(16)$
$\mathrm{C} 9-\mathrm{C} 2-\mathrm{C} 1$	$110.47(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$109.83(18)$
$\mathrm{C} 9-\mathrm{C} 2-\mathrm{H} 2$	111.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	111.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	111.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$98.27(16)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	112.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	112.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	112.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	112.1
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.8
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$113.56(17)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 3$	$116.37(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$110.08(18)$
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 8$	$105.98(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 8$	$104.54(16)$

$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	112.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	112.0
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	112.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	112.0
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.7
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	$113.03(17)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$116.85(17)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$110.41(17)$
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 4$	$105.88(15)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 4$	$105.08(17)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 4$	$104.40(16)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 2$	$98.76(17)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	112.0
$\mathrm{C} 2-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	112.0
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	112.0
C2-C9-H9B	112.0
H9A-C9-H9B	109.7

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2070).

